Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Int ; 185: 108499, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38368718

RESUMO

The transportation of antibiotic resistance genes (ARGs) in manure-soil-plant continuums poses risks to human health. Horizontal gene transfer, particularly for bacterial transformation, is an important way for ARG dissemination. As crucial components in soils, iron oxides impacted the fates of various abiotic and biotic contaminants due to their active properties. However, whether they can influence the transformation of ARGs is unknown, which waits to be figured out to boost the assessment and control of ARG spread risks. In this study, we have investigated the effects of goethite, hematite, and magnetite (0-250 mg/L, with sizes < 100 nm and > 100 nm) on the transfer of ampicillin resistance genes to Escherichia coli cells. At lower iron oxide concentrations, the transformation of ARGs was first facilitated (transformation frequency reached up to 3.38-fold higher), but the facilitating effects gradually weakened and eventually disappeared as concentrations further increased. Particle size and iron oxide type were not the universal determinants controlling the transformation. At lower concentrations, iron oxides interacted with proteins and phospholipids in E. coli envelope structures, and induced the overgeneration of intracellular reactive oxygen species. Consequently, they led to pore formation and permeability enhancement on the cell membrane, thus promoting the transformation. The facilitation was also associated with the carrier-like effect of iron oxides for antibiotic resistance plasmids. At higher concentrations, the weakened facilitations were attributed to the aggregation of iron oxides. In this study, we highlight the crucial roles of the concentrations (contents) of iron oxides on the dissemination of ARGs in soils; this study may serve as a reference for ARG pollution control in future agricultural production.


Assuntos
Antibacterianos , Compostos Férricos , Transformação Bacteriana , Humanos , Antibacterianos/farmacologia , Escherichia coli/genética , Genes Bacterianos , Resistência Microbiana a Medicamentos/genética , Solo/química , Óxidos , Ferro , Microbiologia do Solo , Esterco/microbiologia
2.
Cell Signal ; 115: 111041, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38199598

RESUMO

Pin1, a peptide prolyl cis-trans isomerase, is overexpressed and/or overactivated in many human malignancies. However, whether Pin1 regulates the immunosuppressive TME has not been well defined. In this study, we detected the effect of Pin1 on immune cells and immune checkpoint PD-L1 in the TME of CRC and explored the anti-tumor efficacy of Pin1 inhibitor ATRA combined with PD-1 antibody. We found that Pin1 facilitated the immunosuppressive TME by raising the proportion of myeloid-derived suppressor cells (MDSCs) and declining the percentage of CD8+ T cells and CD4+ T cells. Pin1 restrained PD-L1 protein expression in CRC cells and the effect was tempered by endoplasmic reticulum (ER) stress inducers. Mechanically, Pin1 overexpression decreased the stability of PD-L1 and promoted its degradation by mitigating ER stress. Silencing or inhibiting Pin1 promoted PD-L1 protein expression by inducing ER stress. Hence, Pin1 inhibitor ATRA enhanced the anti-tumor efficacy of PD-1 antibody in the CRC allograft by upregulating PD-L1. Our results reveal the critical and pleiotropic effects of Pin1 on managing the immune cells and immune checkpoint PD-L1 in the TME of CRC, providing a new promising candidate for combination with immunotherapy.


Assuntos
Antígeno B7-H1 , Neoplasias Colorretais , Humanos , Peptidilprolil Isomerase , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/patologia , Receptor de Morte Celular Programada 1/metabolismo , Neoplasias Colorretais/patologia , Microambiente Tumoral
3.
Reprod Biomed Online ; 48(2): 103584, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38061975

RESUMO

RESEARCH QUESTION: Are the observed associations between female reproductive factors and sex hormones with the risk of uterine leiomyoma truly causal associations? DESIGN: The putative causal relationships between female reproductive factors and sex hormones with uterine leiomyoma were investigated using two-sample Mendelian randomization. Statistics on exposure-associated genetic variants were obtained from genome-wide association studies (GWAS). The uterine leiomyoma GWAS from the FinnGen and FibroGENE consortia were used as outcome data for discovery and replication analyses, respectively. Results were pooled by meta-analysis. Sensitivity analyses ensured robustness of the Mendelian randomization analysis. RESULTS: When FinnGen GWAS were used as outcome data, a causal relationship was found between age at menarche (OR 0.84, P < 0.0001), age at menopause (OR 1.08, P < 0.0001), number of live births (OR 0.25, P < 0.001) and total testosterone levels (OR 0.90, P < 0.001) with the risk of uterine leiomyoma. When FibroGENE GWAS were used as outcome data, Mendelian randomization results for age at menopause, the number of live births and total testosterone levels were replicated. In the meta-analysis, a later age at menopause (OR 1.08, P < 0.0001) was associated with an increased risk of uterine leiomyoma. A higher number of live births (OR 0.25, P < 0.0001) and higher total testosterone levels (OR 0.90, P < 0.0001) were associated with a decreased risk of uterine leiomyoma. CONCLUSIONS: A causal relationship between later age at menopause, lower number of live births and lower total testosterone levels with increased risk of uterine leiomyoma was found.


Assuntos
Estudo de Associação Genômica Ampla , Leiomioma , Humanos , Feminino , Análise da Randomização Mendeliana , Fatores Sexuais , Hormônios Esteroides Gonadais , Leiomioma/genética , Testosterona
4.
Chem Biol Interact ; 384: 110726, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37741537

RESUMO

Neuronal apoptosis and neuroinflammation are key factors involved in the pathological changes of Parkinson's disease (PD). Sophoricoside (SOP) has shown anti-inflammatory and anti-apoptosis effects in various diseases. However, the role of SOP in PD has not been reported. In this experiment, we found that oral administration of SOP alleviated weight loss and motor symptoms in 1-Methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-injected mice. Further studies revealed that SOP inhibited inflammatory responses and neuronal apoptosis in the midbrain region of MPTP-injected mice. In vitro mechanistic study, we found that SOP exerts neuroprotective effects through a two-sided action. On the one hand, SOP inhibits Lipopolysaccharide (LPS)-induced inflammatory responses in microglia by inhibiting the Nuclear factor kappa-B(NF-κB) pathway. On the other hand, SOP inhibits 1-methyl-4-phenylpyridinium (MPP+)-induced neuronal apoptosis by regulating the Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) signaling pathway. Thus SOP is expected to be a potential therapeutic agent for PD by targeting neuroinflammation and neuronal apoptosis.


Assuntos
Fármacos Neuroprotetores , Doença de Parkinson , Camundongos , Animais , Doença de Parkinson/metabolismo , Doenças Neuroinflamatórias , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/metabolismo , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/uso terapêutico , NF-kappa B/metabolismo , 1-Metil-4-fenilpiridínio , Administração Oral , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Fármacos Neuroprotetores/metabolismo , Microglia , Neurônios Dopaminérgicos , Mamíferos/metabolismo
5.
Int Immunopharmacol ; 123: 110739, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37536186

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder that occurs most frequently in middle-aged and elderly people. It is characterized by an insidious onset and a complex etiology, and no effective treatment has been developed. The primary characteristic of PD is the degenerative death of midbrain dopaminergic neurons. The excessive autophagy of neurons and hyperactivation of microglia were shown to be involved in the apoptosis of dopaminergic neurons. Limonin (LM), a type of pure natural compound present in grapefruit or citrus fruits (e. g., lemon, orange) has been reported to inhibit apoptosis and inflammation. However, its role and mechanism of action in PD are unclear. In this study, we explored the effect and mechanism of action of LM in PD. In vivo experiments revealed that LM ameliorated 6-OHDA-induced reduced motor activity and PD-related pathological damage in rats. In vitro experiments revealed that LM inhibited the 6-OHDA-induced apoptosis of PC12 cells by inhibiting the excessive autophagy of neurons. In addition, LM inhibited microglial inflammation by activating the AKT/Nrf-2/HO-1 pathway and protected neurons against microglial inflammation-mediated neurotoxicity. In conclusion, the findings of this experiment demonstrated that LM exerted neuroprotective effects by inhibiting neuronal autophagy-mediated apoptosis and microglial activation in 6-OHDA-injected rats, thus indicating that LM can serve as a candidate for PD by targeting neuroinflammation and neuronal autophagy to inhibit neuronal apoptosis.


Assuntos
Limoninas , Fármacos Neuroprotetores , Doença de Parkinson , Humanos , Ratos , Animais , Idoso , Pessoa de Meia-Idade , Oxidopamina/efeitos adversos , Oxidopamina/metabolismo , Microglia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Fármacos Neuroprotetores/metabolismo , Limoninas/farmacologia , Doença de Parkinson/metabolismo , Neurônios , Inflamação/tratamento farmacológico , Administração Oral , Autofagia
6.
Chemosphere ; 337: 139287, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37356591

RESUMO

Glomalin-related soil protein (GRSP) has gained widespread attention because of its benefits to carbon sequestration, improving soil quality and fixing heavy metals. However, studies on how GRSP affects the environmental fate of organic contaminants are scarce. In this study, different types of GRSPs were isolated from forest soils and characterized to study the binding of GRSPs and PAHs under different environmental conditions. The results indicated that GRSPs contain abundant functional groups (such as -NH, -COOH, and CO) and material composition, like humic acid, proteins, and lipids. For the tested GRSPs, EE-GRSP has lower DOC, SUVA260 and SUVA280 values, as well as higher E2/E3 values, indicating that EE-GRSP has lower hydrophobicity and molecular weight. These properties can lead to strong interactions between GRSP and PAHs, especially with benzopyrene, which has a high Kow and Ksw and a large molecular size, with binding constants ranging from 16,119 to 163,697 L·kg-1. Furthermore, low pH (pH = 3) and temperature (15 °C) could increase GRSP's aggregation, enhance the GRSP binding ability with PAHs, whose binding constants were 11,595 and 5067.3 L·kg-1. Therefore, the binding between GRSP and PAHs may lead to changes in the fate of PAHs in the soil and affect the environmental risk of PAHs. The results presented here will deepen our understanding of the environmental function of GRSPs and provide a theoretical basis to further elucidate the mechanisms of GRSPs and organic pollutants.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Solo/química , Proteínas Fúngicas , Glicoproteínas , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes do Solo/análise
7.
Int Immunopharmacol ; 120: 110334, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37244113

RESUMO

Accumulating research has indicated that inordinate activation of microglia releases inflammatory cytokines, damages neurons, and causes neuroinflammation, which eventually could lead to neurodegenerative diseases such as Parkinson's disease and Huntington's disease, etc. Notopterol (NOT) has anti-inflammatory and anti-oxidant functions in boundary tissues, but the effects of NOT on neuroinflammation have not been covered. Therefore, this study attempts to investigate the effect of NOT on neuroinflammation and the underlying mechanisms. According to the findings, NOT dramatically decreased the expression of pro-inflammatory mediators (interleukin-6 (IL-6), inducible nitric-oxide synthase (iNOS), tumor necrosis factor-α (TNF-α), and Cyclooxygenase-2 (COX-2)) in LPS-exposed BV-2 cells. Western blot analysis revealed that NOT could promote the activation of AKT/Nrf2/HO-1 signaling pathway. Further studies have shown that anti-inflammatory property of NOT was inhibited by MK2206 (an AKT inhibitor), RA (an Nrf2 inhibitor), and SnPP IX (an HO-1 inhibitor). In addition, it was also discovered that NOT could weaken the damage of LPS to BV-2 cells and improve their survival rate. As a result, our results imply that NOT inhibits the inflammatory response of BV-2 cells through the AKT/Nrf2/HO-1 signaling axis and exerts a neuroprotective effect by inhibiting the activation of BV-2 cells.


Assuntos
Lipopolissacarídeos , Proteínas Proto-Oncogênicas c-akt , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Lipopolissacarídeos/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Doenças Neuroinflamatórias , Transdução de Sinais , Inflamação/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/metabolismo , Microglia , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo
8.
Sci Total Environ ; 882: 163619, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37080299

RESUMO

With low bioaccessbility, persistence of the undissolved organic pollutants in soil and sediments poses threat to health of the resident. Although ubiquitous black carbon catalyzes a wide range of biogeochemical reactions in nature, its role in biotransformation of the compounds in non-aqueous phase like 2, 2'-nitrobiphenyl remains unclear. Reduction rate constants of 2, 2'-dinitrobiphenyl by Shewanella oneidensis MR-1 increased from 0.0044 h-1 by 7-fold to 0.035 h-1 in the presence of black carbons produced at pyrolysis temperature of 250-900 °C. Accordingly, electrical conductivity of black carbon was enhanced from 0 to 5.56 S∙cm-1. The reactivity of black carbon for catalyzing the biotransformation positively correlated with its electrical conductivity (R2 > 0.89), which was strongly associated with conductive graphitic clusters in it. The surface oxygenated groups in black carbon were likely not involved in the bioreduction. This work attaches importance to role of the ubiquitous black carbon in natural biotransformation of the undissolved pollutants, and elucidates new mechanism for the biotransformation.


Assuntos
Poluentes Ambientais , Grafite , Oxirredução , Elétrons , Biotransformação , Condutividade Elétrica , Poluentes Ambientais/metabolismo , Carbono
9.
J Neuroinflammation ; 20(1): 86, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36991440

RESUMO

BACKGROUND: Previous studies have shown a close association between an altered immune system and Parkinson's disease (PD). Neuroinflammation inhibition may be an effective measure to prevent PD. Recently, numerous reports have highlighted the potential of hydroxy-carboxylic acid receptor 2 (HCA2) in inflammation-related diseases. Notably, the role of HCA2 in neurodegenerative diseases is also becoming more widely known. However, its role and exact mechanism in PD remain to be investigated. Nicotinic acid (NA) is one of the crucial ligands of HCA2, activating it. Based on such findings, this study aimed to examine the effect of HCA2 on neuroinflammation and the role of NA-activated HCA2 in PD and its underlying mechanisms. METHODS: For in vivo studies, 10-week-old male C57BL/6 and HCA2-/- mice were injected with LPS in the substantia nigra (SN) to construct a PD model. The motor behavior of mice was detected using open field, pole-climbing and rotor experiment. The damage to the mice's dopaminergic neurons was detected using immunohistochemical staining and western blotting methods. In vitro, inflammatory mediators (IL-6, TNF-α, iNOS and COX-2) and anti-inflammatory factors (Arg-1, Ym-1, CD206 and IL-10) were detected using RT-PCR, ELISA and immunofluorescence. Inflammatory pathways (AKT, PPARγ and NF-κB) were delineated by RT-PCR and western blotting. Neuronal damage was detected using CCK8, LDH, and flow cytometry assays. RESULTS: HCA2-/- increases mice susceptibility to dopaminergic neuronal injury, motor deficits, and inflammatory responses. Mechanistically, HCA2 activation in microglia promotes anti-inflammatory microglia and inhibits pro-inflammatory microglia by activating AKT/PPARγ and inhibiting NF-κB signaling pathways. Further, HCA2 activation in microglia attenuates microglial activation-mediated neuronal injury. Moreover, nicotinic acid (NA), a specific agonist of HCA2, alleviated dopaminergic neuronal injury and motor deficits in PD mice by activating HCA2 in microglia in vivo. CONCLUSIONS: Niacin receptor HCA2 modulates microglial phenotype to inhibit neurodegeneration in LPS-induced in vivo and in vitro models.


Assuntos
Niacina , Doença de Parkinson , Receptores Acoplados a Proteínas G , Animais , Masculino , Camundongos , Neurônios Dopaminérgicos , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Doenças Neuroinflamatórias , NF-kappa B/metabolismo , Niacina/farmacologia , Doença de Parkinson/metabolismo , PPAR gama/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo
10.
Front Biosci (Landmark Ed) ; 28(2): 26, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36866547

RESUMO

BACKGROUND: The stemness characteristics of cancer cells, such as self-renewal and tumorigenicity, are considered to be responsible, in part, for tumor metastasis. Epithelial-to-mesenchymal transition (EMT) plays an important role in promoting both stemness and tumor metastasis. Although the traditional medicine juglone is thought to play an anticancer role by affecting cell cycle arrest, induction of apoptosis, and immune regulation, a potential function of juglone in regulating cancer cell stemness characteristics remains unknown. METHODS: In the present study, tumor sphere formation assay and limiting dilution cell transplantation assays were performed to assess the function of juglone in regulating maintenance of cancer cell stemness characteristics. EMT of cancer cells was assessed by western blot and transwell assay in vitro, and a liver metastasis model was also performed to demonstrate the effect of juglone on colorectal cancer cells in vivo. RESULTS: Data gathered indicates juglone inhibits stemness characteristics and EMT in cancer cells. Furthermore, we verified that metastasis was suppressed by juglone treatment. We also observed that these effects were, in part, achieved by inhibiting Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (Pin1). CONCLUSIONS: These results indicate that juglone inhibits maintenance of stemness characteristics and metastasis in cancer cells.


Assuntos
Transição Epitelial-Mesenquimal , Naftoquinonas , Neoplasias , Células-Tronco Neoplásicas , Apoptose , Western Blotting , Neoplasias/tratamento farmacológico , Metástase Neoplásica/prevenção & controle , Naftoquinonas/farmacologia
11.
Cells ; 11(18)2022 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-36139502

RESUMO

Parkinson's disease (PD) is a neurodegenerative disease in which neuronal apoptosis and associated inflammation are involved in its pathogenesis. However, there is still no specific treatment that can stop PD progression. Isoalantolactone (IAL) plays a role in many inflammation-related diseases. However, its effect and mechanism in PD remain unclear. In this study, results showed that IAL administration ameliorated 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced PD-related pathological impairment and decreased motor activity in mice. Results from in vitro mechanistic studies showed that IAL regulated apoptosis-related proteins by activating the AKT/Nrf2 pathway, thereby suppressing the apoptosis of SN4741 cells induced by N-methyl-4-phenylpyridinium Iodide (MPP+). On the other hand, IAL inhibited LPS-induced release of pro-inflammatory mediators in BV2 cells by activating the AKT/Nrf2/HO-1 pathway and inhibiting the NF-κB pathway. In addition, IAL protected SN4741 from microglial activation-mediated neurotoxicity. Taken together, these results highlight the beneficial role of IAL as a novel therapy and potential PD drug due to its pharmacological profile.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Animais , Camundongos , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/efeitos adversos , 1-Metil-4-fenilpiridínio , Apoptose , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Iodetos/efeitos adversos , Lipopolissacarídeos/efeitos adversos , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2 , NF-kappa B/metabolismo , Doença de Parkinson/metabolismo , Proteínas Proto-Oncogênicas c-akt , Pirrolidinas , Sesquiterpenos
12.
Artigo em Inglês | MEDLINE | ID: mdl-35865346

RESUMO

Objective: To explore the clinical effect and safety of 5-aminolevulinic acid photodynamic therapy (ALA-PDT) combined with 1550 nm fractional laser therapy in the treatment of rosacea. Methods: 114 patients with type I and type II rosacea treated in our hospital from March 2018 to April 2020 were recruited. They were randomly assigned (1 : 1 : 1) to receive ALA-PDT (photodynamic group), 1550 nm fractional laser (laser group), or ALA-PDT and 1550 nm fractional laser therapy (combination group). Outcome measures included skin lesion scores, efficacy, and adverse reactions. Results: After treatment, patients in the three groups showed lower skin lesion scores than before treatment, and the combination group showed significantly lower results than the other groups (P < 0.05). There was no significant difference in the total efficacy among the three groups (P > 0.05), but the combination group outperformed the other groups in the comparison of the efficacy levels (P < 0.05). Edema with lupus erythematosus, pain, and burning sensation was found in some cases but disappeared within 2 to 4 days after symptomatic treatment without interference with subsequent treatment. No patients had pigmentation, hypopigmentation, scars, or other serious adverse reactions. Conclusion: In the treatment of rosacea, ALA-PDT combined with a 1550 nm fractional laser can reduce redness and facilitate skin remodeling, with high efficacy and safety, so it is worthy of clinical promotion and application.

13.
Chemosphere ; 301: 134753, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35490752

RESUMO

The capability of laccase to oxidate a broad range of polyphenols and aromatic substrates in vitro offers a new technological option for the remediation of polycyclic aromatic hydrocarbon (PAH) pollution with high cytotoxicity. However, laccase application in the remediation of PAH-contaminated sites mainly suffers from a low oxidation rate and high cost because of the difficulty in its recovery. In this study, laccases were immobilized on magnetic Fe3O4 particles coated with chitosan (Fe3O4@SiO2-chitosan) to improve the operational stability and reusability in the treatment of PAH pollution. The enzyme fixation capacity reached 158 mg g-1, and 79.1% of free laccase activities were reserved under the optimum immobilized condition of 4% glutaraldehyde, 1.0 mg mL-1 laccase, 2 h covalent bonding time, and 6 h fixation time. The degradation efficiencies of anthracene (ANT) and benzo[a]pyrene (B(a)P) by Fe3O4@SiO2-chitosan immobilized laccase in 48 h were 81.9% and 69.2%, respectively. Furthermore, it is very easy to magnetically recover the immobilized laccase from reaction systems and reuse it in a new batch. The relative activities of immobilized laccase were over 50% for the degradation of ANT and B(a)P in three catalytic runs, reaching the goal of substantially reducing cost in practice. According to the results from quantum calculations and mass spectrum analyses, the degradation products of ANT and B(a)P by laccase were anthraquinone and B(a)P-dione, respectively. The findings from this study provide valuable insight in promoting the application of immobilized laccase technology in the remediation of PAH contamination.


Assuntos
Quitosana , Hidrocarbonetos Policíclicos Aromáticos , Catálise , Enzimas Imobilizadas/metabolismo , Lacase/metabolismo , Fenômenos Magnéticos , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Polyporaceae , Dióxido de Silício/metabolismo , Trametes
14.
Int Immunopharmacol ; 108: 108694, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35349959

RESUMO

Parkinson's disease (PD) is a usual disease caused by degeneration of the central nervous system, which features the denaturation and death of dopaminergic neurons in the substantia nigra compact (SNc) of the midbrain. Neuroinflammation casts a consequential role in its pathogenesis, and the excessive activation of microglia as a major part of neuroinflammation cannot be ignored. Studies have indicated that Hordenine (HOR) functioned widely as an anti-oxidant and anti-inflammatory substance, but there are no reports on neuroinflammation effects. Therefore, this study is devoted to exploring the effect of HOR on neuroinflammation and its specific mechanism. In vivo, results revealed that HOR depressed the activation of microglia in SNc and protected dopaminergic neurons in the 6-hydroxydopamine (6-OHDA)-induced PD rat model, which terminally reduced movement disorders and weight loss. In vitro, studies have shown that HOR can inhibit inflammatory responses triggered by lipopolysaccharide (LPS) in BV-2 cells. More profound studies have discovered that the specific anti-inflammatory mechanism is intimately associated with the NF-κB and MAPK signaling pathways. All in it together, HOR acts as a significant role in preserving dopaminergic neurons by restraining neuroinflammation mediated by activation of microglia. This may provide a potential drug for Parkinson's treatment.


Assuntos
Fármacos Neuroprotetores , Doença de Parkinson , Animais , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Linhagem Celular , Lipopolissacarídeos/farmacologia , Sistema de Sinalização das MAP Quinases , Microglia , NF-kappa B/metabolismo , Doenças Neuroinflamatórias , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Ratos , Tiramina/análogos & derivados
15.
Environ Pollut ; 297: 118795, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34998896

RESUMO

Soil studies have reported the effect of Hexachlorocyclohexane (HCH) on soil microbial communities. However, how soil microbial communities and function shift after HCH addition into the red and purple soil remains unclear. Here, we analyzed the HCH residue fate, and the functional composition and structure of microbial communities to HCH in the two soils. Under the 100 g/ha and 1000 g/ha treatment, the dissipation rate of HCH was 0.0386 and 0.0273 in the purple soil, 0.0145 and 0.0195 in the red soil. The enrichment of HCH degrading genes leads to a higher HCH dissipation rate in the purple soil. PCoA results demonstrated that HCH addition has a different effect on the community diversity in the two soils, and Proteobacteria and Acidobacteria were the major phyla in the two soils. The soil microbiome average variation degree values of red soil were higher than purple soil, which indicated that the soil microbiome in the purple soil was more stable than in the red soil under HCH addition. PICRUSt2 results indicated that functional genes involved in the carbon, nitrogen biogeochemical cycles and HCH degradation were more tolerant to HCH addition in the purple soil. This study provides new insights into understanding of the effect of HCH addition on soil microbial communities and function in the red and purple paddy soil.


Assuntos
Hexaclorocicloexano , Poluentes do Solo , Bactérias/genética , Hexaclorocicloexano/análise , Solo , Microbiologia do Solo , Poluentes do Solo/análise
16.
Environ Sci Pollut Res Int ; 29(13): 18932-18943, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34704229

RESUMO

Using biomass wastes as adsorbents is a promising option for organic waste reclamation, but unfortunately, their adsorption capacity is usually limited, especially for hydrophobic organic pollutants. To address this issue, this work prepared cetylpyridinium chloride (a cationic surfactant)-modified pine sawdust (CPC-PS) and further demonstrated their performance for hydrophobic bisphenol A (BPA) and 2,4-dichlorophenol (DCP) adsorption. Compared to the PS, the CPC-PS improved the maximum adsorption capacity for BPA and DCP by approximately 98% and 122%, respectively. The kinetic and thermodynamic analyses showed that the BPA and DCP adsorption onto the CPC-PS fitted the pseudo-second-order kinetics and the Freundlich model. After regeneration using NaOH, the adsorption capacity of the CPC-PS for BPA still maintained 80.2% of the initial value after five cycles. Based on the experimental results, the CPC-PS was proposed to enhance the BPA and DCP adsorption through the solubilization of hemimicelles for hydrophobic organic pollutants, the π-π stacking between benzene-ring structures, and the hydrogen binding between the adsorbents and the pollutants. This work provides a viable method to use surfactant-modified pine sawdust as effective adsorbents to remove hydrophobic pollutants.


Assuntos
Cetilpiridínio , Poluentes Químicos da Água , Adsorção , Compostos Benzidrílicos , Cetilpiridínio/química , Clorofenóis , Concentração de Íons de Hidrogênio , Cinética , Fenóis , Termodinâmica , Poluentes Químicos da Água/análise
17.
Aesthetic Plast Surg ; 46(1): 231-236, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34739554

RESUMO

BACKGROUND: This article presents a new method using a dermis-outer orbicularis fascia-orbicularis-levator (DOOL) fixation technique for double-eyelid blepharoplasty. METHODS: Our surgical technique preserves the preorbicular venous network (POVN) and uses mattress sutures to fix the dermis, outer fascia of the orbicularis oculi muscle, and orbicularis oculi muscle with pretarsal levator aponeurosis (DOOL). Between January 2016 and July 2018, 335 patients were treated with this POVN-preserving DOOL technique (321 women and 14 men; mean age, 29.6 y). The patients were followed up for 6-30 months. The complications were documented, and the overall outcomes of the upper eyelid folds were evaluated by both surgeons and patients as good, fair, or poor. RESULTS: Among 335 patients, 307 (91.6%) had good results, 17 (5.1%) had fair results, and 11 (3.3%) had poor results. Postoperative complications included partial (n=4) or complete (n=3) loss of the double-eyelid line and asymmetric folds (n=4). Hypertrophic/depressed scars did not occur. CONCLUSIONS: With less invasiveness and secure internal fixation, the DOOL fixation technique with POVN preservation can achieve a stable and natural double-eyelid appearance. LEVEL OF EVIDENCE IV: This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .


Assuntos
Blefaroplastia , Adulto , Blefaroplastia/métodos , Derme/cirurgia , Pálpebras/cirurgia , Músculos Faciais/cirurgia , Fáscia , Feminino , Humanos , Masculino , Estudos Retrospectivos
18.
Inflammation ; 45(1): 129-142, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34401976

RESUMO

Evodiamine, an alkaloid component in the fruit of Evodia, has been shown to have biological functions such as antioxidant and anti-inflammatory. But whether evodiamine plays an improvement role on mastitis has not been studied. To investigate the effect and mechanism of evodiamine on lipopolysaccharide (LPS)-induced mastitis was the purpose of this study. In animal experiments, the mouse mastitis model was established by injecting LPS into the canals of the mammary gland. The results showed that evodiamine could significantly relieve the pathological injury of breast tissue and the production of pro-inflammatory cytokines and inhibit the activation of inflammation-related pathways such as AKT, NF-κB p65, ERK1/2, p38, and JNK. In cell experiments, the mouse mammary epithelial cells (mMECs) were incubated with evodiamine for 1 h and then stimulated with LPS. Next, pro-inflammatory mediators and inflammation-related signal pathways were detected. As expected, our results showed that evodiamine notably ameliorated the inflammatory reaction and inhibit the activation of related signaling pathways of mMECs. All the results suggested that evodiamine inhibited inflammation by inhibiting the phosphorylation of AKT, NF-κBp65, ERK1/2, p38, and JNK thus the LPS-induced mastitis was ameliorated. These findings suggest that evodiamine maybe a potential drug for mastitis because of its anti-inflammatory effects.


Assuntos
Anti-Inflamatórios/farmacologia , Mastite/tratamento farmacológico , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Quinazolinas/farmacologia , Fator de Transcrição RelA/metabolismo , Animais , Anti-Inflamatórios/uso terapêutico , Biomarcadores/metabolismo , Feminino , Lipopolissacarídeos , Mastite/etiologia , Mastite/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Quinazolinas/uso terapêutico , Distribuição Aleatória , Transdução de Sinais/efeitos dos fármacos
19.
Exp Ther Med ; 22(6): 1400, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34675994

RESUMO

Safranal (SFR), an active ingredient extracted from saffron, exhibits a protective effect on the cardiovascular system. However, the mechanism of SFR against hypoxia/reoxygenation (H/R)-induced cardiomyocyte injury has previously not been investigated in vitro. The aim of the present study was therefore to observe the protective effects of SFR on H/R-induced cardiomyocyte injury and to explore its mechanisms. A H/R injury model of H9c2 cardiac myoblasts was established by administering 800 µmol/l CoCl2 to H9c2 cells for 24 h and reoxygenating the cells for 4 h to induce hypoxia. H9c2 cardiac myoblasts were pretreated with SFR for 12 h to evaluate the associated protective effects. A Cell Counting Kit-8 assay was used for cell viability detection, and the expression levels of lactate dehydrogenase (LDH), creatine kinase-MB (CK-MB), glutathione peroxidase (GSH-px), catalase (CAT), superoxide dismutase (SOD), malondialdehyde (MDA) and caspase-3, and the intracellular Ca2+ concentration were measured using the corresponding commercial kits. Levels of reactive oxygen species (ROS) in the cells were detected using 2,7-dichlorodihydrofluorescein diacetate. Flow cytometry was used to determine the degree of apoptosis and the level of mitochondrial membrane potential (MMP). Moreover, the expression levels of phosphorylated (p-)PI3K, AKT, p-AKT, glycogen synthase kinase 3ß (GSK3ß), p-GSK3ß, Bcl-2, Bax, caspase-3 and cleaved caspase-3 were measured using western blot analysis. Results of the present study demonstrated that the H9c2 cardiac myoblasts treated with SFR exhibited significantly improved levels of viability and significantly reduced levels of ROS, compared with the H/R group. Furthermore, compared with the H/R group, SFR treatment significantly increased the MMP levels and antioxidant enzyme levels, including CAT, SOD and GSH-px; whereas the levels of CK-MB, LDH, MDA and intracellular Ca2+ concentration were significantly decreased. Moreover, the results of the present study demonstrated that SFR significantly reduced caspase-3, cleaved caspase-3 and Bax protein expression levels, but upregulated the Bcl-2 protein expression levels. SFR also increased the protein expressions of PI3K/AKT/GSK3ß. In summary, the results suggested that SFR may exert a protective effect against H/R-induced cardiomyocyte injury, which occurs in connection with the inhibition of oxidative stress and apoptosis via regulation of the PI3K/AKT/GSK3ß signaling pathway.

20.
Exp Ther Med ; 22(3): 958, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34335900

RESUMO

Forkhead box P3 (FOXP3) is a specific marker of regulatory T cells (Tregs) that is also expressed in tumour cells. Previous studies have revealed that FOXP3 can promote metastasis in several types of cancer, including non-small cell lung cancer (NSCLC); however, the underlying mechanism of FOXP3 remains unclear. The aim of the present study was to investigate the effect of FOXP3 on vascular endothelial growth factor (VEGF), epithelial-to-mesenchymal transition (EMT) and the Notch1/Hes1 pathway in NSCLC. After FOXP3 small interfering RNA (siRNAs) were transfected into A549 cells, the expression of FOXP3 mRNA and protein was determined by reverse transcription-quantitative PCR and western blotting. Cell migration and invasion were analyzed by Transwell assays. The concentrations of matrix metalloproteinase (MMP)-2, MMP-9 and VEGF in the cell supernatant were evaluated by ELISA. The expression of relevant proteins involved in EMT and Notch1/Hes1 pathway were assessed via western blotting. Additionally, the expression of FOXP3, CD31 and E-cadherin was detected by immunohistochemical (IHC) staining of 55 human NSCLC tissue samples. The results demonstrated that FOXP3 knockdown significantly inhibited the cell migratory and invasive abilities, decreased the concentrations of MMP-2, MMP-9 and VEGF, downregulated the protein expression of vimentin, N-cadherin, Notch1 and Hes family BHLH transcription factor 1 (Hes1), and upregulated the protein expression of E-cadherin. Furthermore, FOXP3 expression was positively associated with CD31+ vascular endothelial cells and negatively correlated with E-cadherin in NSCLC tissues. In addition, the Notch1/Hes1 pathway inhibitor DAPT significantly downregulated the expression of FOXP3 in a dose-dependent manner. Taken together, these findings demonstrated that FOXP3 may facilitate the invasive and migratory abilities of NSCLC cells via regulating the angiogenic factor VEGF, the EMT and the Notch1/Hes1 pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...